Anzeige
Leistungsbudgets in SoC-Designs einhalten

Die Stromversorgung im Blick

Bei der Analyse der Leistungsaufnahme eines SoC-Designs ist es notwendig, das komplette System – auf realistische Weise – während der Hardware-/Softwarevalidierung zu betrachten. Mit dem Veloce-Emulator und Codelink liefert Mentor hierfür die notwendigen Tools.

Die zeitliche Abfolge der Schaltaktivitäten des Designs ermöglicht die Erkennung und weitere Untersuchung von Stromspitzen. (Bild: Mentor Graphics (Deutschland) GmbH)

Die zeitliche Abfolge der Schaltaktivitäten des Designs ermöglicht die Erkennung und weitere Untersuchung von Stromspitzen. (Bild: Mentor Graphics (Deutschland) GmbH)

Die Beurteilung der Leistungsaufnahme ist ein wichtiger Bestandteil der Systemvalidierung. Es reicht nicht mehr aus, durch Verifikation zu klären, ob ein SoC funktioniert. Designer müssen auch die Frage beantworten, ob das System das Leistungsbudget einhält. Eine korrekte Bewertung der Leistungsaufnahme erfordert jedoch eine Analyse der realen Anwendungsstimuli und die Verwendung von ausgereifter Software. Normalerweise beginnen die Softwareentwicklung und Verifikation erst, wenn das Design und die Implementierung der Hardware abgeschlossen sind. Oft arbeiten Hardwareteams zu diesem Zeitpunkt bereits am nächsten Projekt. Um die Leistungsaufnahme zu verifizieren und zu validieren, müssen Entwickler zumindest Teile der Software früher im Designzyklus entwerfen. Zudem muss die Software in einem Kontext laufen, in dem Leistungsdaten erfasst werden können.

Beim Versuch Probleme bei der Leistungsaufnahme herauszufinden, ist es entscheidend, dass das System auf realistische Weise betrieben wird. Nur wenn die komplette Software läuft und die Caches in einem typischen Zustand sind, erhält man ein realitätsnahes Leistungsprofil. Systementwickler können nicht benötige Teile eines Systems abschalten und somit große Energieeinsparungen ohne Kompromisse an der Funktionalität erzielen. Bei einem Kundenprojekt wurde ein derartiger Ansatz verwendet, wobei jedoch ein Problem festgestellt wurde. Die meiste Zeit funktionierte das System innerhalb der Akkulaufzeit sehr gut, gelegentlich (ca. zehn Prozent der Zeit) verabschiedete sich der Akku lange bevor er sollte. Die Entwickler waren verblüfft. Nach ausführlichem Debuggen entdeckten sie, dass eine der energiehungrigen Peripheriekomponenten dauerhaft eingeschaltet war, obwohl diese von keinem Prozess verwendet wurde. Um das Problem zu debuggen, stoppten sie die Arbeiten am Prototypen und kehrten zur Emulation zurück. Mit dem Veloce-Emulator von Mentor wollten sie die Ursache herausfinden. Veloce bietet eine Funktion, mit der man ein ‚Activity Plot‘ des Designs erstellen kann, das auf dem Emulator läuft. Der Activity-Plot zeigt einige Sample der Schaltaktivität des Designs. Obwohl die Schaltaktivität kein absolutes und exaktes Maß für die aufgenommene Leistung ist, lassen sich damit die verstecken Stromfresser herausfinden (siehe Bild oben).

Der Activity-Plot zeigt die Schaltaktivitäten im Design. (Bild: Mentor Graphics (Deutschland) GmbH)

Der Activity-Plot zeigt die Schaltaktivitäten im Design. (Bild: Mentor Graphics (Deutschland) GmbH)

Der Codelink-Korrelationscursor weist auf den Punkt, wo das System Peripherie A herunterfahren haben soll. (Bild: Mentor Graphics (Deutschland) GmbH)

Das könnte Sie auch interessieren

Mit kompakten Lösungen für das Internet der Dinge verbindet ICPDAS die Feldebene mit der IT-Ebene. Dazu bietet der IIoT Communication Server UA-5231 viele Technologien in einem Gerät. Neben den Datenerfassungs- und Steuerungsfunktionen, verfügt er über einen integrierten OPC-UA-Server und MQTT-Broker.

Anzeige

Kontron stellt den neuen Embedded Server Zinc Cube SKD vor. Der Embedded Server basiert auf Intel Xeon D-2100 Prozessoren (12C 75W/8C 65W/4C 60W) mit vier bis zwölf CPU-Kernen, seine acht DIMM-Sockel unterstützen bis zu 256GB ECC Speicher. Zudem ist der Server mit acht 2,5"-SATA-SSD/HDD-Wechsellaufwerken sowie einem internen M.2-2280-Laufwerk ausgestattet, jeweils mit möglichen RAID-Funktionalitäten. Die Schnittstellen umfassen zwei USB3.0-Anschlüsse an der Frontseite sowie an der Rückseite zwei USB3.0- und zwei USB2.0-Anschlüsse. Für einen hohen Datendurchsatz sorgen die vier 10GBit SFP+ LAN-Ethernet-Schnittstellen. Systemerweiterungen können über einen PCIe x16 (Double Wide) und zwei PCIe x8 Erweiterungssteckplätze vorgenommen werden. Zertifiziert ist er für Windows 10, Windows Server und Linux Server. Dank des ‚Rugged Designs‘ bietet der Server eine hohe Widerstandfähigkeit gegenüber Schock und Vibrationen.

Um im Embedded-Umfeld erfolgreich agil zu entwickeln, müssen neben den Scrum-Grundlagen die Besonderheiten des komplexen Zusammenspiels von Hard- und Software von der Planung bis zum Test berücksichtigt werden. ScrumBedded verspricht hier als maßgeschneiderte Lösung Erfolg.

Das UrsaLeo UL-NXP1S2R2-Kit von RS Components enthält ein Silicon Labs Thunderboard 2-Sensormodul, das für die Verbindung mit der Plattform von UrsaLeo in der Google Cloud vorbereitet ist. Der bereits vorregistrierter Zugriff hilft Entwicklern, schnell produktive Fortschritte zu machen.

Die neue Version der Wago Cloud geht voraussichtlich im ersten Quartal 2019 an den Start. Neben den etablierten Funktionen wie Controllerstatusverwaltung und Dashboards stehen das moderne, übersichtliche Design in Appstruktur sowie weitere Funktionen wie Fernzugang im Fokus.

Sigfox stellte auf der Sigfox Connect die vernetzte Bubble vor, mit der man weltweit Assets lokalisieren kann. Bubbles sind kleine, innerhalb weniger Sekunden überall installierbare Transmitter zum Tracking von Sigfox-Devices, deren Sendeleistung die Lokalisierungsreichweite definiert.

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige